
Multi-Class AdaBoost Learning of Facial Feature
Selection through Grid Computing

Mian Zhou∗†¶, Hong Wei†, Ian Bland†, Anthony Worrall†, David Spence‡, Xiangjun Wang§,
Pengcheng Wen§ and Feng Liu§

∗State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China, 300204
email: zhoumian@hotmail.com

†School of Systems Engineering, University of Reading, Reading, United Kingdom, RG6 6AY
‡IT Service, University of Reading, Reading, United Kingdom, RG6 6AY

§College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, China, 300072
¶School of Educational Technology and Information Services, Tianjin Foreign Studies University, Tianjin, China, 300206

Abstract—AdaBoost is an efficient method for producing a
highly accurate learning algorithm by assembling multiple clas-
sifiers, but it is also widely known for its long duration of off-line
learning. Especially, when it is applied for feature selection for
object detection, its learning process is to exhaustively evaluate
every feature in a large set. With the increasing of image
resolution and complexity of feature transformation approaches,
the computational time will be extremely long, which makes
the large scale AdaBoost learning very difficult. In this paper,
we have employed Grid Computing to solve the difficulty. The
proposed algorithm is to select the most significant features
for face recognition. The selection algorithm is derived from
multi-class AdaBoost, which exhaustively evaluate every feature
from a large set. The deployed Grid Computing system is
actually used for High Throughput Computing specialised on
advanced resource management. To utilizing Grid Computing
on the feature selection process, we have improved multi-class
AdaBoost learning algorithm with parallel structure, so that
the task of High Performance Computing is accomplished in
the environment of High Throughput Computing. With Grid
Computing, selecting 200 features from a large set of 30240
features is finished in 20 days, while without Grid Computing
the time would be more than two years. It shows that Grid
Computing brings vast advantage to computer vision, machine
learning, image processing, and pattern recognition.

I. INTRODUCTION

In recent years, with the development of more precise image
acquisition equipment and more advanced learning algorithm,
machine vision become highly computational intensive. In
some cases, processing data is obtained with high resolution,
multiple frames, various dimensionality, different scales, etc.
It leads to massive computational demand for modern machine
vision application. AdaBoost algorithm used for feature selec-
tion is just the case. To find significant features representing
human faces, Viola and Jones [1] employ AdaBoost to se-
lect 200 rectangle features from over 180000 features. The
detection operates rapidly in real-time, however the training
procedure is notorious too long. Although some efforts [2] are
made by simplifying processes AdaBoost learning in return
for degrading performance, it still requires large amount of
computational time without sacrificing accuracy, In this paper,
we present a Grid Computing [3] solution for AdaBoost

learning which utilises all computers over a local network
within an organisation. A whole learning task is divided into
hundreds of jobs, so that the jobs are processed simultaneously
on individual computer. Finally the task can be accomplished
in a limited time.

The remainder of the paper is organised as follows. Section
II introduces our grid computing system. Section III gives
an overview of the algorithm used in multi-class AdaBoost,
and Section IV describes the implementation of the grid
computing. Section V gives a conclusion on grid computing
in machine vision application.

II. CONDOR GRID COMPUTING

A. Condor

The grid computing system used in this paper is Con-
dor, which first went to stage in 1987 installed as a High
Throughput Computing system at the University of Wisconsin-
Madison. After more than 20 years growing, it has been
expended into a huge system consisting of over 1000 work-
stations and cluster CPUs at the same site. Also, it becomes
a popular Grid computing solution serving dozens of real
users from hundreds of organisations in industry, government,
and academia. By February 2005, Condor has been deployed
on at least 60428 CPUs in 1265 organisations in 39 distinct
countries, and the largest Condor seen so far consists 5608
CPUs. [4]

From infrastructure of Condor, it is a specialised het-
erogeneous, autonomous, semi-available computing resource
management system for compute-intensive jobs. The fully
featured resource management system provides job manage-
ment, scheduling policy, priority scheme, resource monitoring,
and management. The Condor provides more power than
traditional batch queueing system, which does not only allow
high throughput computing but opportunistic computing. High
throughput computing is referred as effectively utilisation of
all available resources within a network to achieve large
amounts of fault-tolerant computational power over a long-
time scale, and opportunistic computing is to seek and utilise
some resources whenever they are available.



There are three key mechanisms of Condor: ClassAd, Job
checkpoint & migration, and CPU scavenge. The ClassAd pro-
vides a framework for matching jobs with resources available
with user defined job requirements and job preferences. In
practice, users normally define software and hardware config-
uration which are minimal requirements for running jobs. The
job checkpoint & migration enables transparently recording a
checkpoint on a computer and subsequently resume or migrate
computation from the checkpoint file. Condor also adopts
CPU scavenge mechanism to search and manage wasted CPU
power from idle nodes across computer clusters. Typically
the mechanism is used to compute effectively and prevent
resources from wasting at night, during lunch, or even in
scattered hours throughout the day when nodes are idle.

B. Reading Campus Grid

The University of Reading provides Grid computing service
for scientific research on brain computer interfaces, weather
forecast, climate change, DNA analysis and machine vision
computing. The grid is based on a Condor pool consisting of
about 300 machines. It is deployed by IT Services and the
School of Systems Engineering.

These machines are located in general computer labs around
the campus and the library for teaching purpose, so that
they can be utilised for scientific computation during school
vacations or at nights. There are three types of nodes in the
Campus Grid: Submit Node, Master Node and Compute nodes.
SN refers to the machine which users make use of to set off
jobs. Master node is a management centre of all jobs in the
Grid. In addition, a master node contains Condor pool which is
used for queuing, scheduling, and prioritizing jobs. Compute
nodes are machines which actually process the Campus Grid
jobs. Normally, one machine is used for Submit node, another
machine is used for master node, the rest of machines in
the Campus are served as compute nodes. In some cases,
the master node and the submit node can be one machine,
since submitting and managing jobs does not take much CPU
resource. Figure 1 shows these three different types of nodes,
and the path which jobs are going through the Grid. Users log
into the submit node, submit jobs to the master node in the
Linux-based command shell. The master node sets up a queue
from the received jobs. When a compute node is available,
i.e., idle for a while, the master node will assign a job to it.
When the node is occupied, the master node will stop the job,
withdraw it to the Condor pool.

As it stands up to about 300 compute nodes (called node for
short) could be available for running jobs. The actual number
of nodes will rise and fall during the day as students occupy
the machines, but overnight nearly all are available. Of the
nodes approximately 15% have 2GB of memory available,
74% have 1GB, and 11% have 512MB. When a user logs on to
a node in person then the node becomes no longer available
to the Campus Grid. If there is a Grid job running, then it
will be stopped. After a while, Condor will try restarting the
stopped job on another node by using Checkpoint. To access
the Campus Grid, a user needs to have an account and logs on

Fig. 1. Three types of nodes and path of jobs in the Grid

the submit node. Access is though Secure Shell (SSH) network
protocol so that users communicate the Campus Grid using a
secure channel between local computers and the submit node.
All the nodes in the Campus Grid have access to Network File
System (NFS) drive belonging to user’s account. It avoids file
transfer operation by users over the Grid, and the file access
is transparent to users. Whatever a job creates, changes or
removes a file on a node, it will be visible immediately on
other nodes. The advantage is for saving results, since result
from different node is saved in an unique space rather than
different spaces for different nodes. The quota of NFS drive
for each account is 10GB. If it is not enough, each node
provides a shared space of 20GB which is used for temporary
files. However, after jobs are finished, the temporary files are
required to be deleted, and these files is invisible from other
nodes.

Most 300 compute nodes generally run MS Windows lo-
cally, since they are deployed for all students for general
purposes. However, the appropriate environment for Condor
computing is Unix/Linux in the Campus. Hence, Cooperative
Linux (CoLinux) [5] technology is used to tackle the problem.
CoLinux is a port of the Linux kernel that allows it to
run together with another operating system. In the campus,
CoLinux is stored as a Linux image file on MS Windows
computers. Once an MS Windows node is idle for 30 minutes,
i.e. no I/O access, no keyboard stroke or no mouse input, the
CoLinux image will be loaded into the memory and deployed
as a standard MS Windows service for accepting Condor jobs.
The CoLinux balances the usage between general computing
purpose and Condor computing purpose. Also it improves
the usability of Condor grid, so that users avoid dual-booting
computers or adopting expensive visualisation software.

The Condor has two runtime environments called universes.
One is standard universe, and the other is vanilla universe. The
standard universe provides the mechanism to record a check-
point and migrate a partially completed job to a new node. To
use the standard universe, it is necessary to compile program
with the special compiler provided by Condor. The vanilla
universe provides a way to run jobs which do not require to
re-link the Condor compiler. There is no job checkpoint or
migrate mechanism under the vanilla universe. For access to
files, jobs must either use a shared file system, or use Condor’s
File Transfer mechanism. Although the vanilla universe has



many constraints on managing the jobs, the program is easily
built by common compilers, such as GNU GCC.

III. MULTI-CLASS ADABOOST LEARNING OF FEATURE
SELECTION

The learning algorithm in this paper is used to perform
feature selection for face recognition. The procedure and key
modules of proposed face recognition system is depicted in
Figure . The face recognition has two parts serving different
functions: learning and testing. In learning, the purpose is
to build a classifier which can recognise human faces. The
learning also includes feature extraction, feature selection
and training classifier with a given face database. In face
images from the face database, features are extracted by Gabor
wavelet transform [6], and face images become Gabor wavelet
representation. However, the dimension of representation is
extremely high. It is impossible to manipulate directly. Hence,
a feature selection module is applied to select a small set of
Gabor wavelet features. With the selected features, face images
in the database are projected into a smaller linear space, and
feed to statistic classifiers (e.g. k-nearest neighbour) with their
label. In testing, new faces are firstly gone through face and
eyes detection and alignment operations. After projected with
selected features, vectors representing new faces are sent to
the trained classifier, and output the final decision. This paper
will focus on feature selection in which multi-class AdaBoost
learning is used to collect a small set of representative features,
while feature extraction can be found in [7], [8].

A. Multi-class AdaBoost
AdaBoost is an efficient method for producing a highly

accurate learning algorithm by combining a set of rough and
moderately accurate learning algorithm. In term of AdaBoost,
inaccurate learning algorithms sometimes are called “weak”
learners, “weak” classifiers, or base classifiers. They have
lower discrimination power to assign the true label correctly.
Hence, AdaBoost refers to a method of combining a set of
weak learners into a strong classifier which gives a high
accuracy for prediction. AdaBoost has been a very prosperous
approach for solving two-class classification. It also has two
multi-class classification versions: AdaBoost.M1 (M1) [9] and
AdaBoost.M2 (M2) [9]. M1 is the most direct way to perform
multi-class classification, and M2 is an enhancement of M1.

Our multi-class AdaBoost algorithm is a combination of
M1 and M2 which is a variant from M1 with some extension
on multiple labels from M2. The algorithm of multi-class
AdaBoost algorithm is given in Table I. In each iteration, a
significant feature is selected with the lowest error εt, so that
there are T significant features after T iterations. A multi-class
weak learner mh(x) is built on a single feature. The error
ε is calculated by summing the weights of all misclassified
examples. The importance αt for each significant feature is
evaluated by the lowest error εt in the t-th iteration.

B. Multi-class Weak Learner
In AdaBoost learning, weak learner is used to evaluate a

feature. In [10], we have demonstrated that different weak

TABLE I
MULTI-CLASS ADABOOST ALGORITHM

1: Given example (x1, y1), . . . , (xn, yn), where xi is the data of
the ith example, which are contributed by k features {j1, . . . , jk},
and yi ∈ Y = {1, . . . , c} for c subjects (classes)

2: Initialise the weights ω1,i = 1
n

for each example (xi, yi).
3: for t = 1, . . . , T do
4: Normalise the weights, ωt,i ←

ωt,i∑n

i=1
ωt,i

so that ωt form a

probability distribution.
5: for all {j1, . . . , jk} do
6: Train a multi-class weak learner mhj built with one single

feature j with the weights ωt,i.
7: The error is calculated as εj =

∑n

i=1
ωt,iγ, where γ = 1

when yi /∈ mht(xi), and γ = 1 otherwise.
8: end for
9: Choose the optimal multi-class weak learner mht with the

lowest error εt from all mhj .
10: Select the corresponding feature jt of the multi-class weak

learner mht as a significant feature.
11: Remove the feature jt from the feature set {j1, . . . , jk}.
12: Update the weights ωt+1,i = ωt,iβ

1−ei
t , where ei = 0 if

yi /∈ mht(xi) and ei = 1 otherwise, and βt = εt
1−εt

.
13: end for

learners lead to different performance of AdaBoost at the end.
Hence, weak learners are crucial and primitive parts of the
algorithm, and the design of weak learner is very important.

In this paper, a multi-class weak learner - mPotsu (multi-
class Potsu) is proposed. The mPotsu weak learner is a multi-
class variant from Potsu weak learner [11] which is a type
of two-class classifier built with the concept of perceptron
[12] and Otsu’s thresholding algorithm [13]. The mPotsu is
constructed by multiple Potsu weak learners with the one-
against-rest strategy [14]. The strategy adopts a set of binary
classifiers to create a multi-class classifier. Given an example
x and its label in k classes, a binary Potsu weak learner is
trained between a class j and test k−1 classes. Since there are
k classes, an mPotsu contains k binary Potsu weak learners.
Each Potsu gives an output indicating examples belonging to
a class j or not.

By applying the multi-class algorithm in face recognition,
the XM2VTS [15] face database is used to evaluate perfor-
mance of the algorithm. In XM2VTS, since there are 200
clients (persons), i.e. 200 classes in the client set, an mPotsu
applied in XM2VTS contains 200 binary Potsu learners. Each
Potsu in an mPotsu is built for a particular class (client) against
rest classes (clients). For example, the first Potsu in an mPotsu
is built for the first client against all other 199 clients. Given
an example x, the first Potsu tells x whether the first client
or not. In XM2VTS, each mPotsu contains 200 binary Potsu
learners.

The input vector of mPotsu is taken from a single Gabor
wavelet feature across all examples in the training set. Hence,
the input vector is one-dimensional. The training in each Potsu
uses a heuristic approach to find an optimal threshold for
separating the examples from the class j and other examples.
If an example is successfully classified, the output will be
labelled as 1, i.e. the positive. If not, the output will be labelled
as 0, i.e. the negative.



Fig. 2. The flowchart and key modules of the face recognition system

In XM2VTS, the decision making of mPotsu is to combine
these 200 decisions. Ideally, if the training examples are well
separated between each class, there will be only one positive
output and 199 negative outputs. The plausible label is the
corresponding class of positive label in mPotsu. However, in
practice, there may be more than one Potsu weak learners
giving positive labels. It is because the training examples are
not linearly separable between different classes in most real
situations. Hence, in the case of one-against-rest strategy, it is
rare to output only one plausible label of multi-class classifiers.
Instead of giving only one absolute label, mPotsu outputs a
label vector η which compromises multiple positive labels.

η = (l1, l2, . . . , lk) (1)

The label vector η contains k components corresponding
to k classes. Each component lj is corresponding to each
class j, and has a boolean value between 1 and 0 indicating
acceptance or rejection on the corresponding class j. By
introducing the label vector η, mPotsu is able to coexist
multiple decisions. For example, an mPotsu gives a label
vector η = (1, 1, 1, 1, 0, . . . , 0), which indicates the plausible
class might be class 1, class 2, class 3, or class 4 (since l1 = 1,
l2 = 1, l3 = 1, and l4 = 1). It makes mPotsu not give an
absolute decision, but several possible decisions.

In AdaBoost, after every weak learner is trained, an eval-
uation is needed to test the performance of the trained weak
learner. Due to multi-label complexity on multi-class classifi-
cation, a loose evaluation method is applied in mPotsu. Given
an example with its true class j, if lj = 1 in the giving label
vector η, the classification will be considered as true positive
no matter what other components li = 1. The classification is
defined as

y ∈ mht(x) when ly = 1 (2)

where mht(x) represents the mPotsu weak learner. For in-
stance, an example x with its true label of class 1 is fed into
an mPotsu. After training, the mPotsu gives a label vector
η = (1, 1, 1, 1, 0, . . . , 0), where l1 in the vector η is equal to

1, the classification is considered as true regardless l1 = 1,
l2 = 2, l3 = 3, and l4 = 4. Since the method of classification
is quite loose, the accuracy of mPotsu is low through assigning
multiple labels to an example. However, since AdaBoost can
boost the performance from a set of weak classifiers, the
low accuracy on different mPotsu is accumulated into higher
accuracy. After many iterations, the performance of multi-class
AdaBoost is enhanced.

C. Computational Issue

Feature selection on multi-class AdaBoost is very time
consuming, because each mPotsu contains 200 Potsu bi-
nary learners when operating in the XM2VTS database. The
computational time on training an mPotsu is equivalent to
time cost on training 200 binary Potsu learners individually.
The AdaBoost algorithm searches over the whole feature set
exhaustively in each iteration. Since the size of each face
image is 27 × 28, and these images are convolved with 40
Gabor wavelet kernels in feature extraction to make magnitude
responses, the total number of Gabor wavelet features is
27 × 28 × 40 = 30240. In XM2VTS, the training dataset
contains 800 face images, which are from 200 clients, i.e. 4
images per client. With a 2.8 GHz CPU, the training on a
single mPotsu needs 11 seconds. One iteration in AdaBoost
training takes 11×30240 = 332640 seconds which is roughly
93 hours. To select 200 features, it needs 200 iterations. The
AdaBoost training takes 93 × 200 = 18600 hours, i.e. 775
days. The whole computational time is extremely long, and
it makes feature selection hardly being accomplished with
current computing facility. Hence, it is necessary to adopt
Grid Computing technology to reduce the computation into
affordable time.

IV. IMPLEMENTATION AND RESULTS

In this Section, the implementation of proposed algorithm
is given. Firstly, a program is design to fit for grid computing.
Secondly, it gives details on preparing executable program.



Finally, the results of features selected after Condor grid
computing are presented.

A. From HTC to HPC

The aim of Condor grid is to provide researchers with a
High Throughput Computing (HTC) resource. HTC is de-
signed to process tasks that require fairly short processing
times and independent to each other, but need to be run 100’s
or 1000’s times. For example, a genetic algorithm process
takes 30 minutes on a single node, but needs to be done 1000
times with different arguments. Therefore it requires 500 hours
when running on only one node. If a Condor grid with around
250 nodes is used, the whole time can be reduced to 2 hours.

However, multi-class AdaBoost learning does not fall into
the category of HTC. First of all, multi-class AdaBoost re-
quires large amount of computational time. Secondly, it does
not need run multiple times. Multi-class AdaBoost learning
only needs a one-time running to find a small set of significant
features for face recognition. It belongs to High Performance
Computing (HPC) which is characterised as needing large
amount of computing power for short periods of time. To
employ Condor grid for the multi-class AdaBoost learning,
it is necessary to alter the structure of learning algorithm for
a HTC environment so that computation can be finished in a
shorter time. Meanwhile, it will show that a HTC platform
can be used for HPC with some alteration on source code.

The multi-class AdaBoost of feature selection is iteration-
based learning. The learning is to run in 200 iterations for
obtaining 200 significant features. The computation between
iterations is sequential and dependent, since output of current
iteration will be input of next iteration. Hence, it can not be
solved distributable over the Condor Grid.

In each iteration, every feature is evaluated by the means
of training an mPotsu with respect to the training accuracy.
The evaluation on a feature does not require large amounts of
time, and there are roughly 30000 features to be evaluated.
Most importantly, evaluation between features is independent
since output of evaluation on one feature is not influenced by
other features. Hence, the conditions of HTC is satisfied by the
feature evaluation within iteration. In Condor, one job could
be an operation of evaluation on a specific feature, so that
there would be over 30000 jobs generated and queued in the
Condor pool. Too many jobs in the pool will bring excessive
network transmission which makes transmission time is more
than actual learning time. In some extreme cases, huge amount
of jobs will lead to slow response on the master node, or
result in deadlock over network. Therefore, the whole set of
features is split into 120 subsets, and each subset contains
252 features. Every job is designed to evaluate 252 features
from a specific subset, and there are 120 jobs in each iteration.
Empirically, a job is normally done in around half an hour,
since the nodes across the grid do not have the same CPU
power. Some jobs finish rapidly due to the assigned node has
more powerful CPU, while some jobs finish slowly due to less
powerful CPU or jobs are interrupted and migrated to other
nodes. If the Grid is only dedicated for AdaBoost learning at

Fig. 3. The Grid computing diagram of Multi-class AdaBoost learning

the time of running, one iteration would also be finished in
around half hours. In actually running, there could be running
120 nodes simultaneously for the best performance. Although
more nodes are available, it is better to reserve some nodes
for other users using grid computing.

Each job not only evaluate the given features, but also write
the error of features into a log file in the shared NFS drive.
On the master node, a program called Jbmont is monitoring
progress of all running jobs in background. By scanning log
files in a periodic time, Jbmont can get the running status
of jobs. Once all 120 jobs for an iteration are finished,
Jbmont immediately combines all log files into an unified file
of all 30204 features. By automatic analysis upon errors in
the unified file, Jbmont founds one significant feature and
saves it in a file. After updating and normalising weights,
Jbmont automatically generates a series of submission files,
then submits these new jobs into the Condor pool for the next
iteration. The diagram of Grid computing structure is displayed
in Figure 3.

B. Program Preparation

An executable program designed for a stand-alone computer
can not directly be deployed on the Condor Grid. The original
source is need to be altered for running in the Condor grid.
While running in the Condor grid, jobs may fail to complete
due to exception of software, power cuts, system down,
and other unpredictable reasons. Hence, jobs are designed to
resume-able for avoiding restart from the beginning,. If a job
is resumed, it is firstly to check the log file, and find where it
fails and start with the place.

In this paper, the vanilla universe is chosen. During com-
piling source code, program is linked with static library.
By doing so, program is more compatible with different
Linux platforms. Since the program calls a set of external
functions, routines and variables, e.g. OpenCV [16]. On some



nodes, there may not have corresponding software installed. To
prevent jobs from collapsing on nodes, the program is linked
with static libraries. Normally, programs compiled with linking
static-libraries normally takes more compiling time and more
storage space.

C. Results

As mentioned before, an Intel Pentium 4 2.8 GHz CPU will
take 775 days, i.e. roughly over two years. However, when
the whole learning process is running on the Campus Grid,
the computational time is reduced dramatically. It is assumed
every node in the grid has the same computing capability as the
Pentium 4 2.8 GHz CPU1. Running on each iteration will be
finished in 46.2 minutes. To select 200 features, 9, 240 minutes
(46.2 × 200), i.e. 154 hours are needed for 200 iterations
learning. The whole computational time is less than one week.

Actually, the whole computation takes 20 days, since the
grid is not mainly dedicated to scientific computing. Some
nodes probably are not available after jobs are assigned to
them. In this situation, jobs on them have to be manually
removed, and are resubmitted to the Condor pool. Meanwhile,
not all nodes have the same hardware configuration which
leads some jobs finished earlier, but others finished later. In
addition, there might be some miss links or temporary discon-
nection which lead to failure in accessing images from face
database. Hence it is very difficult to predict accurate compu-
tational time for grid computing. However, comparing to over
two years computation, the grid computing demonstrates its
significant advantages over the conventional computing.

After 200 iterations, 200 features are shown in Figure 4.
These 200 features are general for all 200 clients in the

Fig. 4. The 200 features on face and the first four features

XM2VTS face database. The feature projection plane in Figure
4 is a mean face image generated from the training set.

V. CONCLUSION

In this paper, we have presented a Condor grid computing
solution for multi-class AdaBoost learning of feature selection.
Condor is a HTC software specialised in job and resource
management. The multi-class AdaBoost of feature selection
is an iteration-based learning on exhaustive evaluation on
a whole feature set. Each feature is evaluated by training
performance of mPotsu weak learner which is constructed
by multiple binary Potsu weak learners. To implement the
multi-class learning in grid computing, we have improved
the learning algorithm so that Condor is successfully used
for the HPC purpose. Selecting 200 features on the Condor

1Actually, on Reading campus grid, there are many nodes with Intel Core
2 CPUs which are faster than Intel Pentium 4 CPUs.

grid computing is finished in 20 days, while running the
feature selection on a single CPU requires over two years. By
using Condor grid computing, the total computational time is
reduced into approximately 1/n of the original time (n is the
number of nodes) in theory. It is indicated that grid computing
can significantly reduce the computational time of machine
vision applications. The only problem of Grid Computing is
hard to assess the performance. Since not all nodes are only
dedicated for Grid Computing, it is very difficult to predict
accurate computational time. Nevertheless, Grid Computing is
an excellent tool for HPC by small organisations or research
sectors which can not afford supercomputing facilities.

REFERENCES

[1] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, vol. 1, 2001, pp. 511–518.

[2] D. Young and J. Ferryman, “Faster learning via optimised AdaBoost,”
in IEEE Conference on Advanced Video and Signal Based Surveillance,
2005.

[3] R. Buyya and S. Venugopal, “A gentle introduction to grid computing
and technologies,” CSI Communications, vol. 29, no. 1, pp. 9–19, 2005.

[4] D. Thain, T. Tannenbaum, and M. Livny, “How to measure a large open
source distributed system,” Concurrency and Computation: Practice and
Experience, vol. 8, no. 15, 2006.

[5] D. Aloni, “Cooperative linux,” in Proceedings of the Linux Symposium,
2004.

[6] M. Zhou and H. Wei, “Face verification using gabor wavelets and
AdaBoost,” in Proceedings of 18th International Conference on Pattern
Recognition, 2006.

[7] ——, “Face feature extraction and selection by gabor wavelets and
boosting,” in Proceedings of International Congress on Image and Signal
Processing, 2009.

[8] M. Zhou, Gabor-Boosting Face Recognition: From Machine Learning
Perspective. VDM Verlag Publishing, 2009.

[9] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” in Proceedings of the
Second European Conference on Computational Learning Theory, 1995.

[10] M. Zhou and H. Wei, “Constructing weak learner and performance
evaluation in AdaBoost,” in Proceedings of International Conference
on Computational Intelligence and Software Engineering, Dec. 2009.

[11] ——, “Heuristic weak learner in AdaBoost for face recognition,” Uni-
versity of Reading, Tech. Rep., 2009.

[12] S. I. Gallant, “Perceptron-based learning algorithms,” IEEE Transactions
on Neural Networks, vol. 1, no. 2, pp. 179–191, 1990.

[13] N. Otsu, “A threshold selection method from gray level histograms,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 9, pp. 62–
66, March 1979.

[14] D. Tax and R. Duin, “Using two-class classifiers for multiclass classi-
fication,” in International Conference on Pattern Recognition, vol. 16,
2002, pp. 124–127.

[15] K. Messer, J. Matas, J. Kittler, and K. Jonsson, “XM2VTSDB: The
extended M2VTS database,” in Audio- and Video-based Biometric
Person Authentication, AVBPA’99, Washington, D.C., March 1999, pp.
72–77, 16 IDIAP–RR 99-02.

[16] “OpenCV.” [Online]. Available: http://opencv.willowgarage.com/


