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ABSTRACT 

This paper presents a unique two-stage image restoration framework especially for further application of a novel 
rectangular poor-pixels detector, which, with properties of miniature size, light weight and low power consumption, has 
great value in the micro vision system. To meet the demand of fast processing, only a few measured images shifted up to 
subpixel level are needed to join the fusion operation, fewer than those required in traditional approaches. By maximum 
likelihood estimation with a least squares method, a preliminary restored image is linearly interpolated. After noise 
removal via Canny operator based level set evolution, the final high-quality restored image is achieved. Experimental 
results demonstrate effectiveness of the proposed framework. It is a sensible step towards subsequent image 
understanding and object identification. 
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1. INTRODUCTION 

Poor-pixels detector, with extremely small quantity of photosensitive cells (pixels) on its imaging surface, is designed for 
an embedded computer vision system. It is valuable in many applications such as micro unmanned aerial vehicles and 
micro biomimetic robots. As an example, a rectangular 25-pixels detector is shown in Figure 1. It has properties of 
miniature size, light weight and low power consumption, which are helpful in a highly-integrated battery-using device. 
Meanwhile, the image acquisition speed can be dramatically accelerated due to only a few photoelectric signals being 
processed [1].  
 

                                     
Figure 1: Pixel distribution of a rectangular 25-pixels detector      Figure 2: A synthetic extremely low-resolution rectangular image 

(grey colour areas depict photosensitive cells) 
 
An image captured by the rectangular 25-pixels detector, shown in Figure 2, has following features. (1) It is an extremely 
low-resolution image, like a mosaic image. (2) Grey information represented by image pixels is not with smooth 
continuity. Hence the contexture is hardly to be established. These make the image do not reflect the same or similar 
shape information as an object has in the real world. It is therefore difficult to identify an object and understand a scene 
based on such a single image. 
 
To ensure further application of the rectangular poor-pixels detector in real problems, this paper presents a unique image 
restoration framework from a series of extremely low-resolution rectangular images shifted up to subpixel level. 
Different from traditional approaches in which the amount of information contained in the original low-resolution images 
should be larger than the amount of information required in the restored image [2-4], the designed framework only needs 
a few measured images to join the fusion operation. This is a guarantee to meet the demand of fast processing. However, 
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cutting down the data means losing the information. To be still able to achieve a high-quality restored image, a two-stage 
image restoration strategy is adopted in the proposed framework. Firstly, a preliminary restored image is linearly 
interpolated by maximum likelihood estimation. Secondly, as further restoration, Canny operator based level set 
evolution is applied for noise removal. 
 
The rest of the paper is organized as follows. Section 2 introduces details of the proposed framework. Experimental 
results on synthetic images are presented and discussed in Section 3. Section 4 concludes the work with identified 
achievements. 
 

2. METHODOLOGY 

1.1  Mathematical model 

To simply and efficiently model the problem, N extremely low-resolution images Yk (k=1,2,…N) are acquired by shifting 
a rectangular 25-pixels detector up to subpixel level. As shown in Figure 3, they are different representations of an ideal 
high-resolution image X. The popular formulation is defined as [4]: 

k k k k kY D H F X V= +           (k=1,2,…N)                 (1) 

Fk stands for the geometric warp operation that exists between X and an interpolated version of Yk (interpolation is 
required in order to treat the image Yk in the higher resolution grid). Hk is the blur matrix, representing the detector’s 
PSF. Dk denotes the decimation process, representing the reduction of the number of observed pixels in the acquired 
images. Vk is Gaussian additive measurement noise with zero mean and auto-correlation matrix Wk = σ2I.  
 

 
Figure 3: Modeling the image restoration problem based on N extremely low-resolution rectangular images 

 
Traditionally, if the number of pixels in the measured image Yk is Mk Mk and in the ideal image X is L L, one intuitive 
rule is: 

2 2 2 2
1 k NL M M M< + + + +K K  

which can be explained as a requirement that the amount of information contained in the measured low-resolution 
images should be larger than the amount of information required in the restored high-resolution image. To estimate X 
well, plenty of Yk are needed, which, however, may increase the computation and slow the operation. In this paper, to 
meet the demand of fast processing, fewer measured images are taken into the restoration. By shifting the rectangular 
poor-pixels detector only along the horizontal, vertical and diagonal directions, a special series of Yk are obtained. This 
acquisition process is easy to realize but loses some useful information which needs to be compensated in the following 
operations. 
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1.2  Linear interpolation 

The maximum likelihood estimation is employed to estimate X by maximizing the conditional probability density 
function P{Y | X}. 

{ }ˆ |ML
X

X ArgMax P X= Y                                    (2) 

Where ˆ
MLX denotes the maximum likelihood estimate of X and Y denotes the group of Yk. Based on the assumption that 

Gaussian additive noise vectors are mutually independent, Eq. (2) is done through the following least squares expression: 
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Differentiating Eq. (3) with respect to X and letting it be zero gives the well-known classic pseudo-inverse result: 
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For the purpose of image smoothness, locally adaptive regularization is adapted in Eq. (3) by using the Laplacian 
operator S and a weighting matrix V. Thus, Eq. (3) becomes to 
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where β is a relaxing factor. Differentiating Eq. (7) again with respect to X and letting it be zero yields the same equation 
as Eq. (4) with a new term, TS VSβ , added to the matrix P as 
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To solve the above equations, the conjugate gradient algorithm is chosen due to its relatively fast convergence and high 
quality result [5]. 
 
Although the above linear interpolation method is easy to operate and workable as well, there are still a lot of noises in 
the preliminary restored image. Additionally, due to the wanting information at the acquisition stage, the contour of the 
restored object is not clear either. To make further improvement of the restoration, Canny operator based level set 
evolution is then applied. 
 

1.3  Noise removal 

Among all filtering techniques, level set method [6-9], which is less sensitive to natural noise and more contrast 
preserving, has become popular due to its flexibility and capability in modeling complex structures. While Canny 
operator [10], which is robust to noise, is probably the most widely used edge detector. Unless the preconditions are 
particularly suitable, it is hard to find an edge detector that performs significantly better than the Canny operator. To 
combine their advantages, a modified level set method with Canny operator is presented. 
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Level set method is based on the partial differential equation. Its main idea is that the moving interface is looked as a 
zero level set in one higher dimensional space. The evolution equation of the level set function φ can be written as [6]: 

0F
t
ϕ ϕ∂
+ ⋅ ∇ =

∂
                                      (9) 

where F is a speed function determining the diffusion of the moving interface opposite to its normal direction. For the 
problem of image noise removal, φ is replaced by the image data Im, and F is usually a kind of curvature flow which 
depends on Im. Thus, Eq. (9) is rewritten as: 
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m
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∂
                                    (10) 

According to the definition of Canny operator [10], n, the normal to the direction of a detected edge, can be estimated 
well from the smoothed gradient direction 
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where G is the two dimensional Gaussian function. At such an edge point, the edge strength E can be calculated by 
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Replacing mI∇ in Eq. (10) by n, the normal direction to an edge, and selecting F in Eq. (10) with consideration of the 
edge strength E, the level set evolution equation with Canny operator is obtained as: 
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where max(E) is the maximum of edge strength in 3×3 neighborhoods of the central point and T is the low threshold for 
Canny optimized algorithm. To penalize the local irregularity in curves, an energy term is added to Eq. (13): 
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where g is an edge indicator function [11], ( )mIεδ  is the univariate Dirac function and μ is an adjusting factor. In 

practice, g and ( )mIεδ  are defined as follows: 
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For all the experiments in this paper, both μ and ε take the value of 1.5. This achieves a good performance both in the 
whole image for noise removal and in the local area for edge preservation. 
 

3. EXPERIMENTAL RESULTS 

In this section, testing experiments on synthetic images are presented to demonstrate the effectiveness of the proposed 
image restoration framework. All simulations are implemented in MATLAB. 
 
There are four ideal scenes (images) containing four men with different postures, respectively, as shown in Figure 4(a). 
For each of them, 60 extremely low-resolution rectangular images are generated by shifting up along the horizontal, 
vertical and diagonal directions, i.e. 20 in each direction. Figure 4(b) gives the examples. Fig. 4(c) shows the preliminary 
results of linear interpolation by maximum likelihood estimation. After noise removal via the Canny operator based level 
set evolution, the final outputs are illustrated in Fig. 4(d). It can be seen that the men shapes are restored to a great extent 
compared with the measured images. It is sufficient to further image understanding. 
 

       
(a) Ideal images 

       
(b) Extremely low-resolution rectangular images (measured images) 

       
(c) Preliminary restored images by linear interpolation 

       
(d) Final restored images after noise removal 

Figure 4: Results showing the proposed framework works to image restoration 
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4. CONCLUSIONS 

In this paper, a unique image restoration framework is presented specifically for extremely low-resolution rectangular 
images, which ensures further application of the rectangular poor-pixels detector. To meet the demand of fast processing, 
only a few measured images shifted up to subpixel level along the horizontal, vertical and diagonal directions are needed 
to join the fusion operation. In order to still achieve a high-quality restored image, the two-stage image restoration 
strategy is then adopted. Based on maximum likelihood estimation, the preliminary restored image is linearly 
interpolated. By the modified level set evolution with Canny operator for noise removal, the final restored image is 
improved further. The experimental results have shown that the proposed framework is effectively performed in image 
restoration. It is a sensible step towards subsequent image understanding and object identification.  
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