教师介绍

张福民

来源:更新时间:2021-03-31

姓 名 张福民
职 称 教授
所在系别 精密仪器工程系
所属课题组  
联系电话  
电子邮件 zhangfumin@tju.edu.cn
办公地址 17东配楼-404
主讲课程 仪器工程概论、精密测量理论、现代测试信号处理
导师类型 仪器科学与技术——博导、硕导
通讯地址 天津大学精密仪器与光电子工程学院
邮政编码 300072

个人经历或学术经历

教育经历

  1. 2000/09 – 2004/06,哈尔滨工业大学,测控技术与仪器,学士
  2. 2004/09 – 2009/06,天津大学,测试计量技术及仪器,博士

研究工作经历

  1. 2009/09 – 2013/06,天津大学,精密仪器工程系,讲师
  2. 2013/06 – 2020/06,天津大学,精密仪器工程系,副教授
  3. 2020/06 – 今,天津大学,精密仪器工程系,教授

研究方向
  1. 激光测距、激光雷达、光学频率梳测量方法

科研项目、成果和专利

科研项目:

  1. 1. 国家自然科学基金重点项目,52035013,跨尺度微纳米三坐标测量基础理论与技术研究, 2021/01-2025/12,参加
  2. 2. 国家重点研发计划,2020YFB2010700,大型复杂高光零部件三维测量技术示范应用,2020/10-2023/09,参加
  3. 3. 上海交通大学,高精度激光干涉仪技术研究,2020/12-2021/05,主持
  4. 4. 联合微电子中心有限责任公司,基于光纤的FMCW无合作目标的测距系统,2019/06-2019/11,主持
  5. 5. 国家自然科学基金面上项目,51675380,基于光学频率梳跨尺度波长同步合成的大尺寸绝对测距技术研究,2017/01-2020/12,主持
  6. 6. 航空基金,大尺寸三维摄影测量系统现场校准技术研究,2016/10-2018/03,12万元,主持
  7. 7. 天津市自然科学基金重点项目,基于光学频率梳测距的机床形变实时测量技术、2015/04-2018/03。
  8. 8. 天津市科技兴海行动计划,海洋工程装备制造现场大尺度原位测量控制技术与装置、2014/09-2016/12。
  9. 9. 航天科技5院CAST创新基金,2014/08-2015/8。
  10. 10. 国家自然科学基金青年项目,基于光学频率梳互相关的大尺寸绝对测距技术、2012/01-2014/12。
  11. 11.天津市应用基础与前沿技术研究计划、基于非合作目标的激光大尺寸坐标测量技术研究、2011.4-2014.3
  12. 12.二重集团重型装备股份有限公司、空间曲面建模精度验证和测量不确定度评估、2014
  13. 13.教育部高等学校博士点专项新教师基金、非合作目标激光测量中表面测量特性的研究、2011-2013
  14. 14.南京水利科学研究院、小尺度自航船模航态测量系统开发、2012-2013

专利:

  1. [1] 201810630695X用于形貌扫描的组合式连续调频激光雷达装置及测量方法
  2. [2] 2018107269657电光调制双光梳形貌测量装置及其校验方法
  3. [3] 2018108879956基于气体吸收池校准的光纤标定系统及使用方法
  4. [4] 2018107269619基于双光梳扫描测距的三维形貌测量系统及方法
  5. [5] 2019108296783一种基于气体吸收池进行信号拼接的光纤标定方法
  6. [6] 201911022830.3一种多传感器测量机坐标统一的标准器和坐标统一方法
  7. [7] 2020100280506一种基于测量碳纤维杆轴线中点的坐标统一化方法

论文、专著
  1. [1]Shi X, Zhang F, Qu X, et al. An online real-time path compensation system for industrial robots based on laser tracker[J]. International Journal of Advanced Robotic Systems, 2016, 13(5): 172988141666336.
  2. [2]Wu H, Zhang F, Liu T, et al . Absolute distance measurement by multi-heterodyne interferometry using a frequency comb and a cavity-stabilized tunable laser[J]. Applied Optics, 2016, 55(15): 4210.
  3. [3]Wu H, Zhang F, Liu T, et al . Absolute Distance Measurement Using Optical Sampling by Cavity Tuning[J]. IEEE Photonics Technology Letters, 2016, 28(12): 1275–1278.
  4. [4]Wu H, Zhang F, Liu T, et al . Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry[J]. Optics Express, 2016, 24(21): 24361.
  5. [5]Wu H, Zhang F, Liu T, et al . Glass thickness and index measurement using optical sampling by cavity tuning[J]. Applied Optics, 2016, 55(34): 9756.
  6. [6]Wu H, Zhang F, Liu T, et al . Long distance measurement using optical sampling by cavity tuning[J]. Optics Letters, 2016, 41(10): 4.
  7. [7]Wu H, Zhang F, Meng F, et al . Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser[J]. Measurement Science and Technology, 2016, 27(1): 015202.
  8. [8]Feng W, Zhang F, Wang W, et al . Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging[J]. Applied Optics, 2017, 56(13): 3831.
  9. [9]Pan H, Zhang F, Shi C, et al . High-precision frequency estimation for frequency modulated continuous wave laser ranging using the multiple signal classification method[J]. Applied Optics, 2017, 56(24): 6956.
  10. [10]Zhang F, Yao Y, Qu X, et al . Dual-beam laser autofocusing system based on liquid lens[J]. Optics & Laser Technology, 2017, 88: 198–204.
  11. [11] 吉宁可,张福民,曲兴华, 等. Ranging Technology for Frequency Modulated Continuous Wave Laser Based on Phase Difference Frequency Measurement[J]. 中国激光, 2018, 45(11): 1104002.
  12. [12]Pan H, Qu X, Shi C, et al . Resolution-enhancement and sampling error correction based on molecular absorption line in frequency scanning interferometry[J]. Optics Communications, 2018, 416: 214–220.
  13. [13]Pan H, Qu X, Zhang F. Micron-precision measurement using a combined frequency-modulated continuous wave ladar autofocusing system at 60 meters standoff distance[J]. Optics Express, 2018, 26(12): 15186.
  14. [14]史春钊,张福民,潘浩, 等. Distance Measurement Technique of Large Bandwidth Laser Frequency Modulated Continuous Wave Under Sinusoid Frequency Modulation[J]. 中国激光, 2018, 45(12): 1201002.
  15. [15]Xiong X-T, Qu X-H, Zhang F-M. Error Correction for FSI-Based System without Cooperative Target Using an Adaptive Filtering Method and a Phase-Matching Mosaic Algorithm[J]. Applied Sciences, 2018, 8(10): 1954.
  16. [16]xiong xingting, Qu X, Zhang F. A novel multi-dimensional absolute distance measurement system using a basic frequency modulated continuous wave radar and an external cavity laser with trilateration metrology[A]. 2017 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems[C]. Beijing, China: SPIE, 2018: 61.
  17. [17]Zhang T, Qu X, Zhang F, et al . Long Distance Measurement System by Optical Sampling Using a Femtosecond Laser[J]. IEEE Photonics Journal, 2018, 10(5): 1–10.
  18. [18]Zhang T, Qu X, Zhang F. Nonlinear error correction for FMCW ladar by the amplitude modulation method[J]. Optics Express, 2018, 26(9): 11519.
  19. [19]Zhao X, Qu X, Zhang F, et al . Absolute distance measurement by multi-heterodyne interferometry using an electro-optic triple comb[J]. Optics Letters, 2018, 43(4): 807.
  20. [20]Li W, Qu X, Zhao X, et al . Absolute distance measurement of rough surfaces using asynchronous optical sampling[J]. Optical Engineering, 2019, 58(09)
  21. [21]Pan H, Qu X, zhang fumin. Method for high-precision distance estimation and dispersion mismatch compensation in frequency scanning interferometry[A]. J. Tan, J. Lin. Tenth International Symposium on Precision Engineering Measurements and Instrumentation[C]. Kunming, China: SPIE, 2019: 74.
  22. [22]Peng B, Qu X, Zhang F, et al . Absolute Angle and Glass Thickness Measurement Based on Dispersive Interferometry[J]. IEEE Photonics Technology Letters, 2019, 31(15): 1285–1288.
  23. [23]Tang G, Qu X, Zhang F, et al . Absolute distance measurement based on spectral interferometry using femtosecond optical frequency comb[J]. Optics and Lasers in Engineering, 2019, 120: 71–78.
  24. [24]Zhang F-M, Li Y-T, Pan H, et al . Vibration Compensation of the Frequency-Scanning-Interferometry-Based Absolute Ranging System[J]. Applied Sciences, 2019, 9(1): 147.
  25. [25]Zhao X, Qu X, Zhang F. Absolute distance measurement with large non-ambiguous range by an electro-optic triple-comb[A]. Conference on Lasers and Electro-Optics[C]. San Jose, California: OSA, 2019: AW4K.2.
  26. [26]Li Y, Qu X, Zhang F, et al . Separation method of superimposed gratings in double-projector structured-light vision 3D measurement system[J]. Optics Communications, 2020, 456: 124676.
  27. [27]Wang J, Huang T, Duan F, et al . Fast peak-tracking method for FBG reflection spectrum and nonlinear error compensation[J]. Optics Letters, 2020, 45(2): 451.
  28. [28]Wang J, Lu Z, Wang W, et al . Long-distance ranging with high precision using a soliton microcomb[J]. Photonics Research, 2020, 8(12): 1964.
  29. [29]Zhang F-M, Zhang H-D, Qu X-H. A multilateral laser-tracking three-dimensional coordinate measuring system based on plane constraint[J]. Measurement Science and Technology, 2020, 31(1): 015205.
  30. [30]Zhang F, Ge R, Zhao Y, et al . Multi-sensor registration method based on a composite standard artefact[J]. Optics and Lasers in Engineering, 2020, 134: 106205.
  31. [31]Zhang F, Yi L, Qu X. Simultaneous measurements of velocity and distance via a dual-path FMCW lidar system[J]. Optics Communications, 2020, 474: 126066.
  32. [32]Zhao X, Qu X, Zhang F. Absolute distance measurement by dispersive interferometry using an electro-optic comb[A]. 2019 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems[C]. International Society for Optics and Photonics, 2020, 11439: 114390X.
  33. [33]Jia L, Wang Y, Wang X, et al . Nonlinear calibration of frequency modulated continuous wave LIDAR based on a microresonator soliton comb[J]. Optics Letters, 2021, 46(5): 1025.
  34. [34]Zhang B, Zhang F, Qu X. A method of locating the 3D centers of retroreflectors based on deep learning[J]. Industrial Robot: the international journal of robotics research and application, 2021

奖励、荣誉和学术兼职
  1. 1. 2019年度四川省科技进步二等奖。复杂孔系大型球体原位制造中主动测量与精准引导关键技术. 四川重大技术装备几何量计量站,二重(德阳)重型装备有限公司,天津大学
  2. 2. 中国计量测试学会科技进步二等奖。重型真空靶室原位测量与制造控制方法及应用. 2017.5
  3. 3. 2019年度江西省技术发明二等奖。提高视觉成像对比度的关键技术与应用。
  4. 4. 天津大学北洋青年学者.

 

科技链接

教学链接

校内链接

  • 国际交流